

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 DEEP : Installing and testing GPU Node in Kubernetes - CentOS7

	Introduction

	Cluster
Status

	Tests

	Test #1 - Simple vector-add
(CUDA8)

	Test #2 - Simple vector-add with different CUDA
driver

	Test #3 - Simple BinomialOption with different CUDA
driver

	Test #4 - Job Scheduling
features

	Access PODs from outside the
cluster

	Test #5 - Long running service with
NodePort

	References

	Kubernetes Installation/Configuration
docs

	GPU Node -
CentOS7.4

	Install
docker

	Driver nvidia-install
repo

	Driver Nvidia-install
driver

	Install NVIDIA-docker
repo

	Install-NVIDIA
docker

	Related
articles

Introduction

The manual procedure for installation and configuration od a
Kubernetes cluster is provided. The cluster is composed by a Master node
and one Worker node

	Mater
	Worker node

	VM

	CentOS 7

	K8S 1.10.0

	 Baremetal

	 2xGPU Tesla K40m

	CentOS 7

	CUDA 9.1

	NVIDIA Driver 390.30

	Docker 17.12

Cluster Status

Cluster Name: KubeDeep

Kubectl components

kubectl get componentstatuses
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-0 Healthy {"health": "true"

kubectl get nodes
NAME STATUS ROLES AGE VERSION
Node1_GPU Ready <none> 13d v1.10.0

Worker GPU
specifications

nvidia-smi
Mon Apr 2 23:13:37 2018
+---+
| NVIDIA-SMI 390.30 Driver Version: 390.30 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K40m On | 00000000:02:00.0 Off | 0 |
| N/A 30C P8 20W / 235W | 0MiB / 11441MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K40m On | 00000000:84:00.0 Off | 0 |
| N/A 32C P8 20W / 235W | 0MiB / 11441MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+

Tests

Test #1 - Simple vector-add (CUDA8)

This CUDA Runtime API
sample is a very basic sample that implements element by element vector
addition.
The examples uses CUDA8 driver.

#cat vector-add.yaml
apiVersion: v1
kind: Pod
metadata:
 name: vector-add
spec:
 restartPolicy: OnFailure
 containers:
 - name: cuda-vector-add
 # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
 image: "k8s.gcr.io/cuda-vector-add:v0.1"
 resources:
 limits:
 nvidia.com/gpu: 1

kubectl apply -f vector-add.yaml
pod "vector-add" created

kubectl get pods --show-all
NAME READY STATUS RESTARTS AGE
vector-add 0/1 Completed 0 4s

Test #2 - Simple vector-add with different CUDA driver

This CUDA Runtime API
sample is a very basic sample that implements element by element vector
addition.
The examples uses two Docker images with different version of CUDA
driver.
To complete the
test, a new Docker image with CUDA driver version 9 has been built and
uploaded in a private repo.

cat cuda8-vector-add.yaml
apiVersion: v1
kind: Pod
metadata:
 name: cuda8-vector-add
spec:
 restartPolicy: OnFailure
 containers:
 - name: cuda-vector-add
 # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
 image: "k8s.gcr.io/cuda-vector-add:v0.1"
 resources:
 limits:
 nvidia.com/gpu: 1

cat cuda9-vector-add.yaml
apiVersion: v1
kind: Pod
metadata:
 name: cuda9-vector-add
spec:
 restartPolicy: OnFailure
 containers:
 - name: cuda-vector-add
 image: <private repo>/deep/cuda-vector-add:v0.2
 resources:
 limits:
 nvidia.com/gpu: 1

kubectl apply -f cuda9-vector-add.yaml -f cuda8-vector-add.yaml
pod "cuda9-vector-add" created
pod "cuda8-vector-add" created

kubectl get pods --show-all
NAME READY STATUS RESTARTS AGE
cuda8-vector-add 0/1 Completed 0 2s
cuda9-vector-add 0/1 Completed 0 2s

Test #3 - Simple BinomialOption with different CUDA driver

This sample
evaluates fair call price for a given set of European options under
binomial model.
To complete the test,
two new Docker images with CUDA8 and CUDA9 has been built and uploaded
in a private repo.
The test
will take some seconds and GPU engage can be shown

cat cuda8-binomialoption.yaml
apiVersion: v1
kind: Pod
metadata:
 name: cuda8-binomialoption
spec:
 restartPolicy: OnFailure
 containers:
 - name: cuda8-binomilaoption
 image: <private_repo>/deep/cuda-binomialoption:v0.1
 resources:
 limits:
 nvidia.com/gpu: 1

cat cuda9-binomialoption.yaml
apiVersion: v1
kind: Pod
metadata:
 name: cuda9-binomialoption
spec:
 restartPolicy: OnFailure
 containers:
 - name: cuda9-binomialoption
 image: <private_repo>/deep/cuda-binomialoption:v0.2
 resources:
 limits:
 nvidia.com/gpu: 1

kubectl apply -f cuda8-binomialoption.yaml -f cuda9-binomialoption.yaml
pod "cuda8-binomialoption" created
pod "cuda9-binomialoption" created

kubectl get pods --show-all
NAME READY STATUS RESTARTS AGE
cuda8-binomialoption 1/1 Running 0 2s
cuda9-binomialoption 1/1 Running 0 2s

kubectl get pods --show-all
NAME READY STATUS RESTARTS AGE
cuda8-binomialoption 1/1 Running 0 22s
cuda9-binomialoption 1/1 Running 0 22s

kubectl get pods --show-all
NAME READY STATUS RESTARTS AGE
cuda8-binomialoption 0/1 Completed 0 1m
cuda9-binomialoption 0/1 Completed 0 1m

nvidia-smi
Mon Apr 2 23:35:17 2018
+---+
| NVIDIA-SMI 390.30 Driver Version: 390.30 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K40m On | 00000000:02:00.0 Off | 0 |
| N/A 31C P0 63W / 235W | 80MiB / 11441MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K40m On | 00000000:84:00.0 Off | 0 |
| N/A 33C P0 63W / 235W | 80MiB / 11441MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 3385 C ./binomialOptions 69MiB |
| 1 3369 C ./binomialOptions 69MiB |
+---+

Test #4 - Job Scheduling features

Tests highlithing the
features of the Kubernetes scheduler.
Default schedule policies are used (FIFO).

Submission of a
bunch of different cuda jobs with different running time.

	Parrec (1h)

	Cuda8-binomialoption.yaml
(5 min)

	Cuda9-binomialoption.yaml
(5 min)

	Cuda8-vector-add.yaml
(few sec)

	Cuda9-vector-add.yaml
(few sec)

The parrec job
has been launched as first job. One GPU has been engaged by the job; the
other is still available for other jobs.

kubectl apply -f parrec.yaml
pod "parrec" created

kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
parrec 1/1 Running 0 22s 172.30.0.52 gpu-node-01

Other jobs have
been submitted in the following order:

kubectl apply -f cuda8-binomialoption.yaml -f cuda9-binomialoption.yaml -f cuda8-vector-add.yaml -f cuda9-vector-add.yaml
pod "cuda8-binomialoption" created
pod "cuda9-binomialoption" created
pod "cuda8-vector-add" created
pod "cuda9-vector-add" created

kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
cuda8-binomialoption 1/1 Running 0 4s 172.30.0.53 gpu-node-01
cuda8-vector-add 0/1 Pending 0 4s <none> <none>
cuda9-binomialoption 0/1 Pending 0 4s <none> <none>
cuda9-vector-add 0/1 Pending 0 4s <none> <none>
parrec 1/1 Running 0 1m 172.30.0.52 gpu-node-01

The
“cuda8-binomialoption” is running, the other are in the FIFO queue in
pending state. After completion, the other job will be running in the
same order they have been submitted.

kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
cuda8-binomialoption 1/1 Running 0 31s 172.30.0.53 gpu-node-01
cuda8-vector-add 0/1 Pending 0 31s <none> <none>
cuda9-binomialoption 0/1 Pending 0 31s <none> <none>
cuda9-vector-add 0/1 Pending 0 31s <none> <none>
parrec 1/1 Running 0 2m 172.30.0.52 gpu-node-01

kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
cuda8-binomialoption 0/1 Completed 0 49s 172.30.0.53 gpu-node-01
cuda8-vector-add 0/1 Pending 0 49s <none> <none>
cuda9-binomialoption 0/1 Pending 0 49s <none> <none>
cuda9-vector-add 0/1 Pending 0 49s <none> <none>
parrec 1/1 Running 0 2m 172.30.0.52 gpu-node-01

kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
cuda8-binomialoption 0/1 Completed 0 1m 172.30.0.53 gpu-node-01
cuda8-vector-add 0/1 Pending 0 1m <none> <none>
cuda9-binomialoption 0/1 ContainerCreating 0 1m <none> gpu-node-01
cuda9-vector-add 0/1 Pending 0 1m <none> <none>
parrec 1/1 Running 0 2m 172.30.0.52 gpu-node-01

kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
cuda8-binomialoption 0/1 Completed 0 1m 172.30.0.53 gpu-node-01
cuda8-vector-add 0/1 Pending 0 1m <none> <none>
cuda9-binomialoption 1/1 Running 0 1m 172.30.0.54 gpu-node-01
cuda9-vector-add 0/1 Pending 0 1m <none> <none>
parrec 1/1 Running 0 2m 172.30.0.52 gpu-node-01

kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
cuda8-binomialoption 0/1 Completed 0 2m 172.30.0.53 gpu-node-01
cuda8-vector-add 0/1 Completed 0 2m 172.30.0.55 gpu-node-01
cuda9-binomialoption 0/1 Completed 0 2m 172.30.0.54 gpu-node-01
cuda9-vector-add 0/1 Pending 0 2m <none> <none>
parrec 1/1 Running 0 3m 172.30.0.52 gpu-node-01

kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE
cuda8-binomialoption 0/1 Completed 0 2m 172.30.0.53 gpu-node-01
cuda8-vector-add 0/1 Completed 0 2m 172.30.0.55 gpu-node-01
cuda9-binomialoption 0/1 Completed 0 2m 172.30.0.54 gpu-node-01
cuda9-vector-add 0/1 Completed 0 2m 172.30.0.56 gpu-node-01
parrec 1/1 Running 0 4m 172.30.0.52 gpu-node-01

Access PODs from outside the cluster

To access PODs from
outside the cluster it can be possible following different procedures
that strictly depend on the usecase and (cloud) providers.

 Installing GPU node and adding it to Kubernetes cluster

 Installing GPU node and adding it to Kubernetes cluster

This is a guide on how to install a GPU node and join it in a running
Kubernetes cluster deployed with kubeadm. The guide was tested on a
Kubernetes cluster v1.9.4 installed with kubeadm. The cluster nodes are
KVM virtual machines deployed by OpenStack. VMs are running Ubuntu
16.04.4 LTS. The node with GPU has a single NVIDIA K20m GPU card.

Step-by-step guide

	We start with a blank node with a GPU. This is the node, we would
like to join in our Kubernetes cluster. First, update the node and
install graphic drivers. The version of the drivers has to be at
least 361.93. We have installed version 387.26 and CUDA Version
8.0.61. Drivers and CUDA installation is not a part of this guide.

NVIDIA drivers information Expand source

ubuntu@virtual-kubernetes-gpu-2:~$ nvidia-smi
Wed Mar 14 08:52:53 2018
+---+
| NVIDIA-SMI 387.26 Driver Version: 387.26 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K20m Off | 00000000:00:07.0 Off | 0 |
| N/A 30C P0 53W / 225W | 0MiB / 4742MiB | 100% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+

CUDA information Expand source

ubuntu@virtual-kubernetes-gpu-2:~$ cat /usr/local/cuda-8.0/version.txt
CUDA Version 8.0.61

	The next step is to install Docker on the GPU node. Install Docker
CE 17.03 from Docker’s repositories for Ubuntu. Proceed with the
following commands as a root user.

sudo apt-get update
sudo apt-get install -y \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
sudo add-apt-repository \
 "deb https://download.docker.com/linux/$(. /etc/os-release; echo "$ID") \
 $(lsb_release -cs) \
 stable"
sudo apt-get update && apt-get install -y docker-ce=$(apt-cache madison docker-ce | grep 17.03 | head -1 | awk '{print $3}')

Docker installation test Expand source

root@virtual-kubernetes-gpu-2:~# docker --version
Docker version 17.03.2-ce, build f5ec1e2
root@virtual-kubernetes-gpu-2:~# docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
ca4f61b1923c: Pull complete
Digest: sha256:97ce6fa4b6cdc0790cda65fe7290b74cfebd9fa0c9b8c38e979330d547d22ce1
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (amd64)
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
 https://cloud.docker.com/

For more examples and ideas, visit:
 https://docs.docker.com/engine/userguide/

	On the GPU node, add nvidia-docker2 package repositories, install it
and reload Docker daemon configuration, which might be altered by
nvidia-docker2 installation.

sudo curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
 sudo apt-key add -
sudo curl -s -L https://nvidia.github.io/nvidia-docker/ubuntu16.04/amd64/nvidia-docker.list | \
 sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update
sudo apt-get install -y nvidia-docker2
sudo pkill -SIGHUP dockerd

nvidia-docker2 GPU test Expand source

root@virtual-kubernetes-gpu-2:~# docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi
Unable to find image 'nvidia/cuda:latest' locally
latest: Pulling from nvidia/cuda
22dc81ace0ea: Pull complete
1a8b3c87dba3: Pull complete
91390a1c435a: Pull complete
07844b14977e: Pull complete
b78396653dae: Pull complete
95e837069dfa: Pull complete
fef4aadda783: Pull complete
343234bd5cf3: Pull complete
64e8786fc8c1: Pull complete
d6a4723d353c: Pull complete
Digest: sha256:3524adf9b563c27d9a0f6d0584355c1f4f4b38e90b66289b8f8de026a9162eee
Status: Downloaded newer image for nvidia/cuda:latest
Wed Mar 14 10:14:51 2018
+---+
| NVIDIA-SMI 387.26 Driver Version: 387.26 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla K20m Off | 00000000:00:07.0 Off | 0 |
| N/A 30C P0 52W / 225W | 0MiB / 4742MiB | 100% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+

	Set nvidia-runtime as the default runtime for Docker on the GPU
node. Edit the /etc/docker/daemon.json configuration file and set
the ”default-runtime” parameter
to nvidia. This also allows us to ommit the –runtime=nvidia parameter
for Docker.

{
 "default-runtime": "nvidia",
 "runtimes": {
 "nvidia": {
 "path": "/usr/bin/nvidia-container-runtime",
 "runtimeArgs": []
 }
 }
}

	As a root user on the GPU node, add Kubernetes package repositories
and install kubeadm, kubectl and kubelet. Then turn the swap off as
it is not supported by Kubernetes.

apt-get update && apt-get install -y apt-transport-https
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
deb http://apt.kubernetes.io/ kubernetes-xenial main
EOF
apt-get update
apt-get install -y kubelet kubeadm kubectl
turn off swap or comment the swap line in /etc/fstab
sudo swapoff -a

Specific version installation; e.g., 1.9.3-00 Expand source

install aptitude, an interface to package manager
root@virtual-kubernetes-gpu-2:~# apt install aptitude -y

show available kubeadm versions in the repositories
root@virtual-kubernetes-gpu-2:~# aptitude versions kubeadm
Package kubeadm:
p 1.5.7-00 kubernetes-xenial 500
p 1.6.1-00 kubernetes-xenial 500
p 1.6.2-00 kubernetes-xenial 500
...
p 1.9.3-00 kubernetes-xenial 500
p 1.9.4-00 kubernetes-xenial 500

install specific version of kubelet, kubeadm and kubectl
root@virtual-kubernetes-gpu-2:~# apt-get install -y kubelet=1.9.3-00 kubeadm=1.9.3-00 kubectl=1.9.3-00

	On the GPU node, edit the /etc/systemd/system/kubelet.service.d/10-kubeadm.conf file
add the following environment argument to enable DevicePlugins feature gate.
If there is already Accelerators feature gate set
, remove it.

Environment="KUBELET_EXTRA_ARGS=--feature-gates=DevicePlugins=true"

/etc/systemd/system/kubelet.service.d/10-kubeadm.conf Expand source

[Service]
Environment="KUBELET_KUBECONFIG_ARGS=--bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf --kubeconfig=/etc/kubernetes/kubelet.conf"
Environment="KUBELET_SYSTEM_PODS_ARGS=--pod-manifest-path=/etc/kubernetes/manifests --allow-privileged=true"
Environment="KUBELET_NETWORK_ARGS=--network-plugin=cni --cni-conf-dir=/etc/cni/net.d --cni-bin-dir=/opt/cni/bin"
Environment="KUBELET_DNS_ARGS=--cluster-dns=10.96.0.10 --cluster-domain=cluster.local"
Environment="KUBELET_AUTHZ_ARGS=--authorization-mode=Webhook --client-ca-file=/etc/kubernetes/pki/ca.crt"
Environment="KUBELET_CADVISOR_ARGS=--cadvisor-port=0"
Environment="KUBELET_CERTIFICATE_ARGS=--rotate-certificates=true --cert-dir=/var/lib/kubelet/pki"
Environment="KUBELET_EXTRA_ARGS=--feature-gates=DevicePlugins=true"
ExecStart=
ExecStart=/usr/bin/kubelet $KUBELET_KUBECONFIG_ARGS $KUBELET_SYSTEM_PODS_ARGS $KUBELET_NETWORK_ARGS $KUBELET_DNS_ARGS $KUBELET_AUTHZ_ARGS $KUBELET_CADVISOR_ARGS $KUBELET_CERTIFICATE_ARGS $KUBELET_EXTRA_ARGS

	On the GPU node, reload and restart kubelet to apply previous
changes to the configuration.

sudo systemctl daemon-reload
sudo systemctl restart kubelet

	If not already done, enable GPU support on the Kubernetes master by
deploying following Daemonset.

kubectl create -f https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v1.9/nvidia-device-plugin.yml

	For the simplicity, generate a new token on the Kubernetes master
and print the join command.

ubuntu@virutal-kubernetes-1:~$ sudo kubeadm token create --print-join-command
kubeadm join --token 6e112b.a598ccc2e90671a6 KUBERNETES_MASTER_IP:6443 --discovery-token-ca-cert-hash sha256:863250f81355e64074cedf5e3486af32253e394e939f4b03562e4ec87707de0a

	Go back to the GPU node and use the printed join command to add GPU
node into the cluster.

ubuntu@virtual-kubernetes-gpu-2:~$ sudo kubeadm join --token 6e112b.a598ccc2e90671a6 KUBERNETES_MASTER_IP:6443 --discovery-token-ca-cert-hash sha256:863250f81355e64074cedf5e3486af32253e394e939f4b03562e4ec87707de0a
[preflight] Running pre-flight checks.
 [WARNING FileExisting-crictl]: crictl not found in system path
[discovery] Trying to connect to API Server "KUBERNETES_MASTER_IP:6443"
[discovery] Created cluster-info discovery client, requesting info from "https://KUBERNETES_MASTER_IP:6443"
[discovery] Requesting info from "https://KUBERNETES_MASTER_IP:6443" again to validate TLS against the pinned public key
[discovery] Cluster info signature and contents are valid and TLS certificate validates against pinned roots, will use API Server "KUBERNETES_MASTER_IP:6443"
[discovery] Successfully established connection with API Server "KUBERNETES_MASTER_IP:6443"

This node has joined the cluster:
* Certificate signing request was sent to master and a response
 was received.
* The Kubelet was informed of the new secure connection details.

Run 'kubectl get nodes' on the master to see this node join the cluster.

	Run following command to see the GPU node (virtual-kubernetes-gpu-2)
status on the cluster.

ubuntu@virutal-kubernetes-1:~$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
virtual-kubernetes-gpu Ready <none> 1d v1.9.4
virtual-kubernetes-gpu-2 NotReady <none> 13s v1.9.4
virutal-kubernetes-1 Ready master 5d v1.9.4
virutal-kubernetes-2 Ready <none> 5d v1.9.4
virutal-kubernetes-3 Ready <none> 5d v1.9.4

	After a while, the node is ready.

virtual-kubernetes-gpu-2 Ready <none> 7m v1.9.4

	Now we have 2 GPU nodes ready in our Kubernetes cluster. We can
label the recently added node (virtual-kubernetes-gpu-2) with the
accelerator type by running following command on the master.

kubectl label nodes virtual-kubernetes-gpu-2 accelerator=nvidia-tesla-k20m

	To check nodes for accelerator label, run kubectl get nodes -L
accelerator on Kubernetes master.

ubuntu@virutal-kubernetes-1:~/kubernetes$ kubectl get nodes -L accelerator
NAME STATUS ROLES AGE VERSION ACCELERATOR
virtual-kubernetes-gpu Ready <none> 1d v1.9.4 nvidia-tesla-k20m
virtual-kubernetes-gpu-2 Ready <none> 24m v1.9.4 nvidia-tesla-k20m
virutal-kubernetes-1 Ready master 5d v1.9.4
virutal-kubernetes-2 Ready <none> 5d v1.9.4
virutal-kubernetes-3 Ready <none> 5d v1.9.4

	To test the GPU nodes, go to the master and create a file with the
following content and execute it.

gpu-test.yml

apiVersion: v1
kind: Pod
metadata:
 name: cuda-vector-add
spec:
 restartPolicy: OnFailure
 containers:
 - name: cuda-vector-add
 # https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
 image: "k8s.gcr.io/cuda-vector-add:v0.1"
 resources:
 limits:
 nvidia.com/gpu: 1 # requesting 1 GPU per container
 nodeSelector:
 accelerator: nvidia-tesla-k20m # or nvidia-tesla-k80 etc.

ubuntu@virutal-kubernetes-1:~/kubernetes$ kubectl create -f gpu-test.yml
pod "cuda-vector-add" created
ubuntu@virutal-kubernetes-1:~/kubernetes$ kubectl get pods -a
NAME READY STATUS RESTARTS AGE
cuda-vector-add 0/1 Completed 0 19s

 Introduction

Introduction

Mesos 1.0.0 added first-class support for Nvidia GPUs. The minimum required Nvidia driver version is 340.29

Enabling GPU support in a Mesos cluster is really straightforward (as stated in the official project documentation and as documented in this page). It consists in the following steps:

	configuring the agent nodes in order to expose the available gpus as resources to be advertised to the master nodes;

	enabling the framework GPU_RESOURCES capability so that the master includes the GPUs in the resource offers sent to the frameworks.

Mesos exposes GPUs as a simple SCALAR resource in the same way it always has for CPUs, memory, and disk.

An important remark is that currently the GPU support is available for the Mesos containerizer and not for the Docker containerizer. Anyway the Mesos containerizer is now able to run docker images natively through the Universal Container Runtime (UCR).

The following limitations can, on the other hand, have impacts on the deployment of Long-Running services (Marathon) requiring GPUs:

	The UCR does not support the following: runtime privileges, Docker options, force pull, named ports, numbered ports, bridge networking, port mapping.

It is important to remember that the task definition must be properly written in order to specify the right containerizer (type=MESOS).

For Marathon:

{
 "id": "test",
 "cpus": 2,
 "mem": 2048,
 [...]
 "container": {
 "type": "MESOS",
 "docker": {
 "image": "tensorflow/tensorflow"
 }
 }
}

See also

 Enabling open-id connect authentication

Enabling open-id connect authentication

Mesos/Marathon/Chronos do not support open-id connect authentication natively.

A very simple solution is to front the mesos cluster with an Apache server that itself is capable of negotiating authentication for users.

The following configuration can be used to setup a reverse proxy that uses the module mod_auth_openidc:

ServerName mesos.example.com

<VirtualHost *:443>
 ServerName mesos.example.com

 LoadModule auth_openidc_module /usr/lib/apache2/modules/mod_auth_openidc.so

 OIDCClaimPrefix "OIDC-"
 OIDCResponseType "code"
 OIDCScope "openid email profile"
 OIDCProviderMetadataURL https://iam.deep-hybrid-datacloud.eu/.well-known/openid-configuration
 OIDCClientID 332e618b-d3bf-440d-aea1-6da2823aaece # replace with your client ID
 OIDCClientSecret **** # replace with your client secret
 OIDCProviderTokenEndpointAuth client_secret_basic
 OIDCCryptoPassphrase **** # replace with your passphrase
 OIDCRedirectURI https://mesos.example.com/mesos/redirect_uri

 OIDCOAuthVerifyJwksUri "https://iam.deep-hybrid-datacloud.eu/jwk"

 <Location /mesos>
 AuthType openid-connect
 Require valid-user
 LogLevel debug
 </Location>

 <Location /marathon>
 AuthType oauth20
 Require valid-user
 LogLevel debug
 RequestHeader set Authorization "Basic YWRtaC46bTNzb3NNLjIwMTY="
 </Location>

 <Location /chronos>
 AuthType oauth20
 Require valid-user
 LogLevel debug
 RequestHeader set Authorization "Basic YWRtaZ46bTNzb3NDLjIwMTY="
 </Location>

 ProxyTimeout 1200
 ProxyRequests Off
 ProxyPreserveHost Off

 ProxyPass /mesos/ http://172.20.30.40:5050/
 ProxyPassReverse /mesos/ http://172.20.30.40:5050/

 ProxyPass /marathon/ http://172.20.30.40:8080/
 ProxyPassReverse /marathon/ http://172.20.30.40:8080/

 ProxyPass /chronos/ http://172.20.30.40:4400/
 ProxyPassReverse /chronos/ http://172.20.30.40:4400/

 RemoteIPHeader X-Forwarded-For

 ## Logging
 ErrorLog "/var/log/apache2/proxy_mesos_error_ssl.log"
 ServerSignature Off
 CustomLog "/var/log/apache2/proxy_mesos_access_ssl.log" combined

 ## SSL directives

 SSLProxyEngine on
 SSLEngine on
 SSLCertificateFile "/etc/letsencrypt/live/mesos.example.com/fullchain.pem"
 SSLCertificateKeyFile "/etc/letsencrypt/live/mesos.example.com/privkey.pem"
</VirtualHost>

Note that Line 30 is needed if you have enabled basic HTTP authentication to protect your endpoints (in the example above, username/password authentication has been enable for Marathon).

In this case you need to add the Authorization header in the request to the backend. The hash can be computed with the following python script:

import base64
hash = base64.b64encode(b'user:password')

Once the proxy is up and running you can contact the cluster API endpoints using the IAM (open-id connect) token:

Marathon API endpoint:

 Overview

Overview

This document provide step by step deployment of Openstack site with nova-lxd via Openstack Ansible. That would allows site admins to avoid obstacles and pitfalls during deployment and create a Openstack site with nova-lxd for testing and development in a short time without studying extensive documentation of Openstack Ansible.

This documentation also show that nova-lxd is supported (although not perfectly, see steps 10-11 for fixing LXD configuration) in mainstream Openstack deployment tool beside Ubuntu-specific Juju charms. Ubuntu 18.04 and LXD 3.0 are also supported (instead of 16.04 / LXD 2.0 used in Juju).

Comparison between Openstack Ansible and Juju/conjure-up

Juju is Ubuntu- specific, and using Ubuntu distro packages for installing Openstack. Openstack Ansible is distro-neutral and by default it uses source code from github for Openstack installation (configurable for distro packages, however). For testing and development, installation via source code has advantages using latest codes, however, for production sites, distro packages are more stable, especially when Ubuntu offers up to 5-year software maintenance in comparison with 18-month from Openstack.

Other differences: Juju uses LXD containers for all Openstack services and has better integration with Ubuntu ecosystem (MAAS, LXD). Openstack Ansible use LXC containers for services on master (like nova-api, keystone, glance, cinder) or directly baremetal for services on workers (like nova-compute, cinder-volume).

Openstack Ansible offers wide possibilities of customization, e.g. method of installation (distro package vs source), based Linux distro (RedHat/CenOS, openSUSE and Ubuntu), selection of services to be installed. Beside Openstack installation, it also does many other tasks for security hardening and high availability (e.g. haproxy/Galera). As the result, it is more complex and need more time for deployment. (Un)fortunately, Openstack Ansible has very extensive documentation that is useful but may require time to study. See [1] and [2] from references for more information.

Installing a All-in-One Openstack site with nova-lxd via Openstack Ansible

This installation takes rather long time (totally around ~2h according to disk performance, network connection and list of installed services). Fast disk and network connection is strongly recommended because of intensive disk operation during installation and large amount of files downloaded from repositories

	Install Ubuntu Bionic/ Create VM with vanilla Ubuntu Bionic (at least 16GB RAM, 80GB disk). So far do not init/configure the LXD service, Ansible script may report error like “storage already exist”.

	Optional: Update all packages, then reboot

	Cloning Openstack-Ansible

 # git clone https://git.openstack.org/openstack/openstack-ansible \
 /opt/openstack-ansible
 # cd /opt/openstack-ansible

	Optional: Choose version/branch if needed

 # git tag -l
 # git checkout master
 # git describe --abbrev=0 --tags

	Bootstrap Ansible (about 6min in the test)

 # scripts/bootstrap-ansible.sh

	Default scenario is without CEPH. Select CEPH scenario if you want and bootstrap AOI (about 6min in the test)

 # export SCENARIO='ceph'
 # scripts/bootstrap-aio.sh

	Setting hypervisor to LXD:

Edit file “/etc/openstack_deploy/user_variables.yml”. Add a line “nova_virt_type: lxd” into it.

 nova_virt_type: lxd

	Examine list of services to be installed in “/etc/openstack_deploy/conf.d/” Copy more services from “/opt/openstack-ansible/etc/openstack_deploy/conf.d/” to “/etc/openstack_deploy/conf.d/” as needed. Remember to change the filename extension from aio to yml. For example, CEPH scenario is without Horizon and we want to add it.

 # cp /opt/openstack-ansible/etc/openstack_deploy/conf.d/horizon.yml.aio \
 /etc/openstack_deploy/conf.d/horizon.yml

	Start the core installation (in 3 big steps). It takes long time (about 15min + 30min + 30min in the test), so you may want to use tmux or screen terminal if using SSH on unreliable network.

 # cd /opt/openstack-ansible/playbooks
 # openstack-ansible setup-hosts.yml
 # openstack-ansible setup-infrastructure.yml
 # openstack-ansible setup-openstack.yml

During execution of the first command “openstack-ansible setup-hosts.yml”, it is possible that you have timeout error during LXC caching if you have slow disk and/or network connection. In this case, please increase the value of “lxc_cache_prep_timeout” in “/etc/ansible/roles/lxc_hosts/defaults/main.yml” and re-execute the command.

The test “TASK [os_tempest : Execute tempest tests]” in the last command “openstack-ansible setup-openstack.yml” will fail. Ignore it and continue to next steps.

	The Ansible script create a storage with the name “default” and driver “dir” for LXD, however, it does not work (btrfs or zfs required). Now create a new storage for LXD with btrfs with other name, e.g. “nova”. A simplest way is to run “lxd init” and configure storage via it. Do not touch networks/bridges or other configuration.

 # lxd init

	Setting LXD storage for nova:
Edit file /etc/nova/nova.conf, add the following section into the file. For the pool option, use the name of storage created in the previous step, e.g. “nova”

 [lxd]
 allow_live_migration = True
 pool ="nova"

Restart nova-compute service:

 # systemctl restart nova-compute
 # systemctl status nova-compute

	Installation is now completed, however, some post-installation configurations are needed before starting the first VM. Refer to [3] for more information. The post-installation configuration can be done via CLI or via Horizon dashboard. The following steps show the configuration via Horizon.

	Get the IP address of load balancer from “external_lb_vip_address” in “/etc/openstack_deploy/openstack_user_config.yml” file. Use i”ptables” for IP forwarding to get the dashboard from your PC, e.g. :

 # iptables -t nat -A PREROUTING -p tcp -m tcp --dport 8080 -j DNAT --to-destination external_lb_vip_address:443

Also remember do open firewall for the chosen port (8080 in the example).

	Open Horizon dashboard in your browser as https://ip_address_of_host:8080. Log in using “admin” user and password stored in “keystone_auth_admin_password” item in “/etc/openstack_deploy/user_secrets.yml” file.

	In Horizon, do the steps for configuring Openstack network: create a new private network, create a private subnet for the private network, create a router to connect private subnet to existing public network, open ports in security groups (e.g. port 22 for SSH). Also import SSH public key from “~/.ssh/id_rsa.pub” on the host.

	Creating images does not work in default Horizon installed by Ansible, you must change Horizon setting or use command-line to create image. Use “lxc-attach” command to get into “aio1_utility_container_xxxxxx” container, load Openstack credential, download a LXD image from repository and add it to glance:

 # lxc-ls
 # lxc-attach aio1_utility_container_xxxxxxxx
 # cd
 # source openrc
 # wget http://cloud-images.ubuntu.com/xenial/current/xenial-server-cloudimg-amd64-root.tar.gz
 # glance image-create --name xenial-lxd --disk-format raw --container-format bare --file xenial-server-cloudimg-amd64-root.tar.gz

	Return to Horizon, create a new VM with the newly added “xenial-lxd” image. Remember to no create a new volume. Allocating a floating IP and assign it to the VM. From command line on the host, try to connect to the VM via ssh.

	Success.

Notes:

	CEPH volume is still not attachable to VM by defaults, some additional work required.

References

	https://docs.openstack.org/openstack-ansible/latest/user/aio/quickstart.html

	https://docs.openstack.org/project-deploy-guide/openstack-ansible/latest/

	https://docs.openstack.org/openstack-ansible/latest/admin/openstack-firstrun.html

 Overview

Overview

As the nova-lxd plugin in OpenStack is still experimental, we need to deploy and test its current status to find out the working configuration before implementing new features

Testing of nova-lxd with different software configurations

OpenStack with nova-lxd has been deployed by different methods: OpenStack DevStack, JuJu, and OpenStack Ansible. Various combinations with OpenStack/LXD and base OS version have been tested to find out the working configuration of OpenStack nova-lxd for production.

Since nova-lxd plugin and OpenStack DevStack (deployment of OpenStack Cloud by Python scripts) have extremely shallow documentation, the first step was finding out the best starting configuration for development. We reached the following results (without advanced post-configuration efforts):

Host OS | OpenStack (DevStack)version | LXD/LXC version | Storage type | Nova-lxd recognized | Notes
———– | ————————— | ————— | ———— | ——————- | —–
Ubuntu 16.04.5 LTS | Queens | 2.0.11 | Dir | Yes | VM creation successful, Volume attachment error.
Ubuntu 16.04.5 LTS | Queens | 2.0.11 | zfs | Yes | VM creation successful, Volume attachment error.
Ubuntu 16.04.5 LTS | Queens | 3.0.1 | zfs | No | Couldn’t find the lxd storage from its zpool.
Ubuntu 16.04.5 LTS | Queens | 3.0.1 | btrfs | Yes | VM creation error.
Ubuntu 16.04.5 LTS | Queens | 3.0.1 | Dir | Yes | VM creation error.
Ubuntu 16.04.5 LTS | Queens | 3.0.1 | lvm | Yes | VM creation error.
Ubuntu 16.04.5 LTS | Rocky | 2.0.11 | Dir | Yes | VM creation successful, Volume attachment error.
Ubuntu 16.04.5 LTS | Rocky | 2.0.11 | zfs | No | Error during deployment.
Ubuntu 16.04.5 LTS | Rocky | 3.0.1 | zfs | No | Couldn’t find the lxd storage from its zpool.
Ubuntu 16.04.5 LTS | Rocky | 3.0.1 | btrfs | Yes | VM creation error.
Ubuntu 18.04.1 LTS | Rocky | 3.0.1 | zfs | No | Couldn’t find the lxd storage from its zpool.
Ubuntu 18.04.1 LTS | Rocky | 3.0.1 | btrfs | Yes | VM creation error.
Ubuntu LTS (both tested versions) | OpenStack devstack (both tested versions) | The last version (from its Snap repository) | N/A | No | LXD/LXC isn’t recognized by OpenStack devstack installation script stack.sh or nova-lxd plugin

The hosts have the following static parameters:

Tool/Library | Version | Notes
———– | ————————— | —————
Python | 2.7 | It is possible to use Python 3.X also.
pip | 9.0.3 | The tool was installed by OpenStack devstack script stack.sh
PyLXD | 2.2.7 | The library has to be pre-installed on a host.
Nova-lxd plugin | According to an OpenStack version, there are following options: 	17.0.1 (stable/queens)
	18.0.0 (stable/rocky), 18.0.0.0rc2.dev1 (master)

 | The master branch was used for hosts with storage backend zfs running LXD/LXC 3.0.1

There are two other deployment options for OpenStack alongside DevStack which are the following: Juju, and Ansible. The main advantage of these two approaches is automated deployment (with a post-configuration) of an OpenStack Cloud environment. The main differences between the deployment approaches are the configuration of an OpenStack environment, and LXD/LXC support. Juju supports LXD/LXC 2.0.11. It creates inside a Xenial/Bionic host another virtual layer by an LXD daemon from the host, and so Xenial with LXD/LXC 2.0.11 is installed in a container. All in all, it doesn’t support higher versions of LXD/LXC which supports GPUs.

On the other hand, Ansible supports LXD/LXC 3.0.1. However, the situation about a nova-lxd plugin integration is the same, but the configuration of an OpenStack environment is different. According to Alex Kavanagh (one of the maintainers for the nova-lxd plugin) suggestions, the plugin has to be post-configured within a nova-compute configuration that is not documented in any official sources. The configuration file has to contain the following lines:

[DEFAULT]
compute_driver = nova_lxd.nova.virt.lxd.LXDDriver

[lxd]
allow_live_migration = True
pool = {{ storage_pool }}

A problem with the post-configuration is that it has to be performed in a different way within an OpenStack Cloud environment deployed by DevStack. The environment has a dedicated configuration file nova-cpu.conf. The other approaches create the standard deployment of an OpenStack Cloud environment, and so the configuration of the nova-lxd plugin is performed by editing of a nova.conf file.

Working configuration

According to the performed test mentioned above, we chose OpenStack Ansible repository for deployment of an OpenStack Cloud. The main reason is that it deploys a standard OpenStack Cloud with LXD/LXC 3.0.1 which supports GPUs.

 Deploying OpenStack environment with nova-lxd via DevStack

Deploying OpenStack environment with nova-lxd via DevStack

This document is a step-by-step guide of OpenStack with nova-lxd deployment via DevStack on a single machine (All-in-One). The guide was tested on a host running Xenial or Bionic. The host has pre-installed following libraries:

	Python 2.7

	PyLXD 2.2.7

Installation steps

	Create a new host running Xenial or Bionic with Python 2.7

	Install the newest version of a library PyLXD 2.2.7

	Install pip

$ sudo apt update
$ sudo apt install python-pip

	Set up your environment variable bash LC_ALL

$ export LC_ALL="en_US.UTF-8"
$ export LC_CTYPE="en_US.UTF-8"
$ sudo dpkg-reconfigure locales

	Download and install the library PyLXD

$ git clone https://github.com/lxc/pylxd.git
$ cd pylxd/
$ sudo pip install .

	Optional step: Install ZFS

$ sudo apt install lxd zfsutils-linux

	Optional step: If you need to install a different LXD/LXC version, execute the following steps:

	Uninstall LXD and LXC (delete configuration and data files of LXD/LXC and it’s dependencies)

$ sudo apt-get purge --auto-remove lxd lxc

	Install the wanted version of LXD/LXC:

	LXD/LXC 3.0.1 on a host running Xenial

$ sudo apt-get purge --auto-remove lxd lxc

	the newest version

$ sudo snap install lxd

if you wish to install LXD 3.0 and then only get bugfixes and security updates. If running staging systems, you may want to run those on the candidate channels, using bash--channel=candidate and bash--channel=3.0/candidate respectively.

$ sudo snap install lxd --channel=3.0

	Configure LXD:

	In order to use LXD, the system user must be a member of the ‘lxd’ user group.

$ sudo adduser martin lxd
$ newgrp lxd
$ groups

	LXD initialisation

$ sudo lxd init

The session below (LXD 3.0.1 with a zfs storage backend) is what was used to write this guide. Note that pressing Enter (a null answer) will accept the default answer (provided in square brackets).

Would you like to use LXD clustering? (yes/no) [default=no]:
Do you want to configure a new storage pool? (yes/no) [default=yes]:
Name of the new storage pool [default=default]: lxd
Name of the storage backend to use (btrfs, dir, lvm, zfs) [default=zfs]:
Create a new ZFS pool? (yes/no) [default=yes]:
Would you like to use an existing block device? (yes/no) [default=no]:
Size in GB of the new loop device (1GB minimum) [default=15GB]:
Would you like to connect to a MAAS server? (yes/no) [default=no]:
Would you like to create a new local network bridge? (yes/no) [default=yes]:
What should the new bridge be called? [default=lxdbr0]:
What IPv4 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]:
What IPv6 address should be used? (CIDR subnet notation, “auto” or “none”) [default=auto]: none
Would you like LXD to be available over the network? (yes/no) [default=no]:
Would you like stale cached images to be updated automatically? (yes/no) [default=yes]
Would you like a YAML "lxd init" preseed to be printed? (yes/no) [default=no]:

	Optional step: Remove old LXD version to avoid conflict

$ sudo /snap/bin/lxd.migrate

	Optional step: Increase the limit of number open files (only needed for larger tests). See https://lxd.readthedocs.io/en/latest/production-setup/

	Optional step: Check configuration (as a user), if your configuration is correct

$ sudo /snap/bin/lxc storage list
$ sudo /snap/bin/lxc storage show default
$ sudo /snap/bin/lxc network show lxdbr0
$ sudo /snap/bin/lxc profile show default

9.Optional step: Run a test container in LXD (as a user), if LXD work correctly

$ sudo lxc launch ubuntu:16.04 u1
$ sudo lxc exec u1 ping www.ubuntu.com
$ sudo lxc stop u1
$ sudo lxc delete u1

	Create a user “Stack” and add it to the ‘lxd’ user group

$ sudo useradd -s /bin/bash -d /opt/stack -m stack
$ echo "stack ALL=(ALL) NOPASSWD: ALL" | sudo tee /etc/sudoers.d/stack
$ sudo usermod -G lxd -a stack
$ sudo su - stack

	Download OpenStack installation scripts from DevStack repository

$ git clone https://git.openstack.org/openstack-dev/devstack
$ cd devstack

	Create a local.conf file (a branch of a nova-lxd plugin is bash stable/rocky) as follows:

[[local|localrc]]

HOST_IP=127.0.0.1 # set this to your IP
FLAT_INTERFACE=ens2 # change this to your eth0

ADMIN_PASSWORD=devstack
DATABASE_PASSWORD=$ADMIN_PASSWORD
RABBIT_PASSWORD=$ADMIN_PASSWORD
SERVICE_PASSWORD=$ADMIN_PASSWORD
SERVICE_TOKEN=$ADMIN_PASSWORD

run the services you want to use
ENABLED_SERVICES=rabbit,mysql,key
ENABLED_SERVICES+=,g-api,g-reg
ENABLED_SERVICES+=,n-cpu,n-api,n-crt,n-obj,n-cond,n-sch,n-novnc,n-cauth,placement-api,placement-client
ENABLED_SERVICES+=,neutron,q-svc,q-agt,q-dhcp,q-meta,q-l3
ENABLED_SERVICES+=,cinder,c-sch,c-api,c-vol
ENABLED_SERVICES+=,horizon

disabled services
disable_service n-net

enable nova-lxd
enable_plugin nova-lxd https://git.openstack.org/openstack/nova-lxd stable/rocky

	Start installation of an OpenStack environment (it will take a 15 - 20 minutes, largely depending on the speed of your internet connection. Many git trees and packages will be installed during this process.)

$./stack.sh

	Configuration of bash nova-compute: In order for a lxd storage pool to be recognized in nova, the bash/etc/nova/nova-cpu.conf file needs to have bash [lxd] section containing the following lines:

[lxd]
allow_live_migration = True
pool = {{ storage_pool }}

Restart nova-compute service:

$ systemctl restart devstack@n-cpu.service
$ systemctl status devstack@n-cpu.service

	Optional step: if your OpenStack installation is set to incorect repository, execute the following commands (adding a Rocky cloud archive):

$ sudo rm /etc/apt/sources.list.d/{{Bad_archive}}.list
$ sudo add-apt-repository cloud-archive:rocky

	Optional step: Use IP forwarding to get access to the dashboard from outside by executing the following command on the host where the whole OpenStack environment with nova-lxd is installed:

$ sudo iptables -t nat -A PREROUTING -p tcp --dport 8080 -j DNAT --to “{{IP_of_horizon}}:80”

where IP_of_horizon is the IP address of the dashboard that is given when the installation finishes (in the format of 10.x.x.x, e.g. 10.110.236.154)

	Log into the dashboard (http://{{IP_address_of_host}}:8080/horizon), with “admin_domain” domain, “admin” user and “devstack” password, where ip_address_of_host is the IP of the host machine, where the whole OpenStack environment is installed (e.g. http://147.213.76.100:8080/horizon)

	Create a new VM (Launch instance) in Compute->Instances. Do not create a new volume (choose NO for new volume), and add only internal network.

	In Network->Security group, add new ingress rules for ICMP (ping) and TCP port 22 (SSH) to default security group.

	Allocate a new floating IP from Network -> Floating IPs and assign to the VM.

	From host machine, try ssh to floating IP of VM

$ ssh ubuntu@{{Floating_ip}}

Handy commands:

Notes:

	CEPH volume is still not attachable to VM by defaults, some additional work required.

References

	https://discuss.linuxcontainers.org/t/lxd-3-0-0-has-been-released/1491

	https://docs.jujucharms.com/devel/en/tut-lxd

	https://docs.openstack.org/devstack/latest/

	https://github.com/openstack/nova-lxd/blob/master/devstack/local.conf.sample

	https://wiki.ubuntu.com/OpenStack/CloudArchive

 Installing nova-lxd with Juju

Installing nova-lxd with Juju

This is instruction of deploying Openstack with nova-lxd on single machine (All-in-One) for testing and deployment. Tested on Ubuntu Xenial and Bionic. Whole process of installation would take around 2h. Be careful with the LXD setting, leave default values when possible to avoid later problems. (“none” to IPv6, “lxdbr0” for bridge and “default” for name of LXD storage.

Installation

	Create/Install a new machine with Ubuntu 16/18.04 and adequate performance (16GB RAM needed)

	Optional: Update all packages (as root)

 # apt update && apt dist-upgrade -y && apt autoremove -y

	Install LXD (version 3.x required):

 # sudo snap install lxd

	Configure LXD:

 # /snap/bin/lxd init

Say none to IPv6. If there a empty disk volume (block storage) attached, use it as existing block storage for LXD without mounting/formatting, otherwise use dir (with name of the storage as “default” for both cases). For other options, leave default value.

	Optional: Add current user to LXD group (for using LXD as user later)

 # sudo usermod -a -G lxd $USER
 # newgrp lxd

	Optional: remove old LXD version to avoid conflict

 # sudo /snap/bin/lxd.migrate

	Optional: increase the limit of number open files (only needed for larger tests). See https://lxd.readthedocs.io/en/latest/production-setup/

 # echo fs.inotify.max_queued_events=1048576 | sudo tee -a /etc/sysctl.conf
 # echo fs.inotify.max_user_instances=1048576 | sudo tee -a /etc/sysctl.conf
 # echo fs.inotify.max_user_watches=1048576 | sudo tee -a /etc/sysctl.conf
 # echo vm.max_map_count=262144 | sudo tee -a /etc/sysctl.conf
 # echo vm.swappiness=1 | sudo tee -a /etc/sysctl.conf
 # sudo sysctl -p

Also update default profile for improving network connnection

 # lxc profile device set default eth0 mtu 9000

	Optional: Check configuration (as user), if your configuration is correct

 # /snap/bin/lxc storage list
 # /snap/bin/lxc storage show default
 # /snap/bin/lxc network show lxdbr0
 # /snap/bin/lxc profile show default

	Optional: Run a test container in LXD (as user), if LXD work correctly

 # lxc launch ubuntu:16.04 u1
 # lxc exec u1 ping www.ubuntu.com
 # lxc stop u1
 # lxc delete u1

	Install juju:

 # sudo snap install juju --classic

	Install conjure-up

 # sudo snap install conjure-up --classic

	Optional: Start tmux terminal (to avoid unwanted termination in the case of network disruption)

 # tmux

	Start conjure-up (in tmux terminal if tmux is used):

 # conjure-up

Choose Openstack with Nova-LXD, localhost. Other options can be left as default (lxdbr0 network bridge, “default” storage pool, ~/.ssh for SSH key), then deploy

	Go to have a coffee for about 45-90 min (depending on performance of host machine). The installation with deploy nova-lxd with relevant services (keystone, glance, cinder, horizon). Remember the IP address of horizon dashboard from the output (e.g. http://10.110.236.154/horizon).

	Use IP forwarding to get access to dashboard from outside by executing the following command on the host where whole openstack with nova-lxd is installed:

 # sudo iptables -t nat -A PREROUTING -p tcp --dport 8080 -j DNAT --to “IP_of_horizon:80”

where IP_of_horizon is the IP address of the dashboard that is given when the installation finishes (in format of 10.x.x.x, e.g. 10.110.236.154)

	Log into the dashboard (http://ip_address_of_host:8080/horizon), with “admin_domain” domain, “admin” user and “openstack” password, where ip_address_of_host is the IP of host machine, where whole Openstack is installed (e.g. http://147.213.76.100:8080/horizon)

	Create a new VM (Launch instance) in Compute->Instances. Do not create new volume (choose NO for new volume), and add only internal network.

	In Network->Security group, add new ingress rules for ICMP (ping) and TCP port 22 (SSH) to default security group.

	Allocate a new floating IP from Network -> Floating IPs and assign to the VM.

	From host machine, try ssh to floating IP of VM

 # ssh ubuntu@floating_ip

Notes

	Ceph and Cinder are installed together with other Openstack services, however attaching block storage does not work. According to https://lists.gt.net/openstack/dev/64776, it should require some additional work.

	Although Ubuntu Bionic with LXD 3.0 was used as base OS on the host, in LXD containers are Ubuntu Xenial with LXD 2.0

 Overview of MPS

Overview of MPS

From [1], MPS is a runtime service designed to let multiple MPI processes using CUDA to
run concurrently on a single GPU. A CUDA program runs in MPS mode if the MPS control daemon is
running on the system.

When CUDA is first initialized in a program, the CUDA driver attempts to connect to the MPS
control daemon. If the connection attempt fails, the program continues to run as it
normally would without MPS. If however, the connection attempt to the control daemon
succeeds, the CUDA driver then requests the daemon to start an MPS server on its behalf.

If there’s an MPS server already running, and the user id of that server process matches
that of the requesting client process, the control daemon simply notifies the client
process of it, which then proceeds to connect to the server. If there’s no MPS server
already running on the system, the control daemon launches an MPS server with the same
user id (UID) as that of the requesting client process. If there’s an MPS server already
running, but with a different user id than that of the client process, the control daemon
requests the existing server to shutdown as soon as all its clients are done. Once the
existing server has terminated, the control daemon launches a new server with the user id
same as that of the queued client process.

The MPS server creates the shared GPU context, manages its clients, and issues work to the
GPU on behalf of its clients. An MPS server can support upto 16 client CUDA contexts at a
time. MPS is transparent to CUDA programs, with all the complexity of communication
between the client process, the server and the control daemon hidden within the driver
binaries.

From [2], the Volta architecture introduced new MPS capabilities. Compared to MPS on pre-Volta GPUs,
Volta MPS provides a few key improvements:

	Volta MPS clients submit work directly to the GPU without passing through the MPS server.

	Each Volta MPS client owns its own GPU address space instead of sharing GPU address space with all other MPS clients.

	Volta MPS supports limited execution resource provisioning for Quality of Service (QoS).

How to use MPS service

Start MPS service:

nvidia-cuda-mps-control -d

Stop MPS service:

echo quit | nvidia-cuda-mps-control

Testing environment

	HW: Virtual machine on IISAS-GPU cloud, flavor gpu1cpu6 (6 cores, 24GB RAM, 1 GPU Tesla K20m)

	SW: Ubuntu 16.04, latest nvidia driver and CUDA (nvidia driver version 410.48, CUDA 10.0.130)

Test 1. Test with CUDA native sample nbody, without nvidia-cuda-mps service

a. Single CUDA process

#./nbody -benchmark -numbodies=512000

number of bodies = 512000
512000 bodies, total time for 10 iterations: 29438.994 ms
= 89.047 billion interactions per second
= 1780.930 single-precision GFLOP/s at 20 flops per interaction

b. Two processes at the same time:

./nbody -benchmark -numbodies=512000

512000 bodies, total time for 10 iterations: 52418.652 ms
= 50.010 billion interactions per second
= 1000.194 single-precision GFLOP/s at 20 flops per interaction

Performance of each process reduced to about 1/2 due to parallel execution (overall GPU performance is the same). nvidia-smi shows both processes using GPU at the same time. No GPU conflicts detected.

Test 2. Test with CUDA native sample nbody, with nvidia-cuda-mps service

a. Single CUDA process:

Same performance as without MPS server.

b. Two processes with different user IDs:

The second process is blocked (waiting without termination), it starts computation only the first process is terminated. Performance is the same as without MPS server.

In both case, nvidia-smi indicates nvidia-cuda-mps-server is using GPU, not the nbody process.

c. Two processes with the same user ID:

Both processes will run in parallel. Performance will be evenly divided between processes, like without MPS service (Test 1b).

Test 2 has been repeated with nbody commands placed inside Docker containers instead of baremetal, the same behavior. Note that Docker set user ID at root by default.

Test 3. Test with Docker using mariojmdavid/tensorflow-1.5.0-gpu image, without nvidia-cuda-mps service

Command used in the test:

sudo docker run --runtime=nvidia --rm -ti mariojmdavid/tensorflow-1.5.0-gpu /home/tf-benchmarks/run-bench.sh all

a. Single container:

all tests passed.

b. Two containers in parallel:

the second container shows different error messages according to the running benchmarks. Some error message is rather clear like that

2018-10-03 13:58:33.135064: W tensorflow/core/framework/op_kernel.cc:1198] Resource exhausted: OOM when allocating tensor with shape[1000] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc

Some error messages are rather internal

2018-10-03 13:51:00.160626: W tensorflow/stream_executor/stream.cc:1901] attempting to perform BLAS operation using StreamExecutor without BLAS support
Traceback (most recent call last):
 File "/home/tf-benchmarks/benchmark_alexnet.py", line 221, in <module>
 tf.app.run()
 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 124, in run
 _sys.exit(main(argv))
 File "/home/tf-benchmarks/benchmark_alexnet.py", line 217, in main
 run_benchmark()
 File "/home/tf-benchmarks/benchmark_alexnet.py", line 210, in run_benchmark
 timing_entries.append(time_tensorflow_run(sess, grad, "Forward-backward"))
 File "/home/tf-benchmarks/benchmark_alexnet.py", line 136, in time_tensorflow_run
 _ = session.run(target_op)
 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 895, in run
 run_metadata_ptr)
 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1128, in _run
 feed_dict_tensor, options, run_metadata)
 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1344, in _do_run
 options, run_metadata)
 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1363, in _do_call
 raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InternalError: Blas GEMM launch failed : a.shape=(128, 9216), b.shape=(9216, 4096), m=128, n=4096, k=9216
 [[Node: affine1/affine1/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Reshape, affine1/weights/read)]]
Caused by op u'affine1/affine1/MatMul', defined at:
 File "/home/tf-benchmarks/benchmark_alexnet.py", line 221, in <module>
 tf.app.run()
 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 124, in run
 _sys.exit(main(argv))
 File "/home/tf-benchmarks/benchmark_alexnet.py", line 217, in main
 run_benchmark()
 File "/home/tf-benchmarks/benchmark_alexnet.py", line 181, in run_benchmark
 last_layer = inference(images)
 File "/home/tf-benchmarks/benchmark_alexnet.py", line 120, in inference
 affn1 = _affine(resh1, 256 * 6 * 6, 4096)
 File "/home/tf-benchmarks/benchmark_alexnet.py", line 76, in _affine
 affine1 = tf.nn.relu_layer(inpOp, kernel, biases, name=name)
 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/nn_impl.py", line 272, in relu_layer
 xw_plus_b = nn_ops.bias_add(math_ops.matmul(x, weights), biases)
 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/math_ops.py", line 2022, in matmul
 a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_math_ops.py", line 2516, in _mat_mul
 name=name)
 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
 op_def=op_def)
 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3160, in create_op
 op_def=op_def)
 File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1625, in __init__
 self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InternalError (see above for traceback): Blas GEMM launch failed : a.shape=(128, 9216), b.shape=(9216, 4096), m=128, n=4096, k=9216
 [[Node: affine1/affine1/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/device:GPU:0"](Reshape, affine1/weights/read)]]

Test 4. Test with Docker using mariojmdavid/tensorflow-1.5.0-gpu image, with nvidia-cuda-mps service

Option “–ipc=host” required for connecting MPS service (full command “sudo docker run –runtime=nvidia –rm –ipc=host -ti mariojmdavid/tensorflow-1.5.0-gpu /home/tf-benchmarks/run-bench.sh all”), see https://github.com/NVIDIA/nvidia-docker/issues/419

Some tests passed but not all

/home/tf-benchmarks/run-bench.sh: line 78: 137 Aborted (core dumped) python ${TFTest[$i]}

According to [3], only Tensorflow with version 1.6 and higher can support MPS.

Test 5. Test with Docker using vykozlov/tf-benchmarks:181004-tf180-gpu image, without and with nvidia-cuda-mps service

Tensorflow 1.8.0, GPU version, python 2, command:

sudo docker run --ipc=host --runtime=nvidia --rm -ti vykozlov/tf-benchmarks:181004-tf180-gpu ./tf-benchmarks.sh all

a. without MPS service

all tests passed.

b. with MPS service

Only first part (forward) of each test passed, then the execution terminated (core dumped).

Identified reasons why Tensoflow does not work correctly with MPS

The reasons have been discussed in [3]:

	stream callbacks are not supported on pre-Volta MPS clients. Calling any stream callback APIs will return an error. (from MPS official document [4])

	But CUDA streams are used everywhere in Tensorflow

So Tensorflow will not work with MPS on old (pre-Volta) GPU.

Final remarks:

	Without MPS service, native CUDA samples can be executed in parallel and the GPU performance is divided among processes

	With MPS service, CUDA executions with different user IDs are serialized, one needs to wait until other finishes.

	CUDA processes with the same user ID can be executed in parallel.

	Tensorflow will not work with MPS on old (pre-Volta) GPU.

	Need to test on newer GPU cards (Volta)

References

	http://manpages.ubuntu.com/manpages/xenial/man1/alt-nvidia-340-cuda-mps-control.1.html

	https://docs.nvidia.com/deploy/mps/index.html

	https://github.com/tensorflow/tensorflow/issues/9080

	https://docs.nvidia.com/deploy/mps/index.html

 uDocker new GPU implementation

uDocker new GPU implementation

The use of NVIDIA GPUs for scientific computing requires the deployment of proprietary drivers and libraries.
In order to use the GPUs inside containers, the devices associated to the GPU have to be visible inside the container.
Furthermore, the driver has to be installed in the image and the version has to match the one deployed on the guest host.
This turns the Docker images un-shareable and the image must be built locally for each host.
The alternative is to have an image for each version of the driver, which is un-manageable since at each update,
many images would have to be built. The uDocker released at the end of the Indigo-Datacloud project
does not have such features, as such in order to use GPUs, the image has to have the NVIDIA drivers and
libraries matching the host system. On the other hand, it is not necessary to pass the NVIDIA devices
to the uDocker container since they are visible inside the container, in the same way a non-privileged user
can use those devices in the host system.

The work performed during the first months of the DEEP-HybridDataCloud project, was to implement such automatism.
The development is available in the “devel” branch of the official GitHub repository [1], and scheduled for
the first release of DEEP-HybridDataCloud software stack at the end of October 2018.
The libraries and drivers deployed in the host system are made available to the containers.
This version has been tested under several conditions and by several users and use cases.
The tests performed in the framework of DEEP-HybridDataCloud project WP3 and WP4 are described in the following.

Test and evaluation of new implementation

The following tests and benchmark tools were developed to test performance of the python code packed in a Docker container
and executed by means of uDocker [2]. We compare uDocker performance with baremetal execution and via
Singularity 2.5.2-dist [3]. The benchmark tools are based on official Tensorflow Docker images from the Docker Hub [4]
and deep learning python scripts publicly available at GitHub [5]. All scripts implement convolutional neural networks (CNN)
but of different architecture: AlexNet, GoogLeNet, Overfeat, VGG [6], and one based on Tensorflow example for
the MNIST dataset [7]. The latter processes MNIST data placed inside the Docker container while
others process synthetic data generated on-the-fly. We adapted the scripts for more recent Tensorflow versions and
homogenized the scripts to have a ‘burn-in’ phase, measure total runtime, mean time per batch and its standard deviation.
In all tests the same version of the python scripts and corresponding Docker images, tagged as ‘181004’ at
both GitHub and Docker Hub [7] are used. The tests comprise the following:

	They are executed on GPU nodes of ForHLR II cluster [8], where each of the nodes contains four 12-core Intel Xeon
processors E7-4830 v3 (Haswell), 1 TB of main memory, 4x960 GB local SSDs, 4 NVIDIA GeForce GTX980 Ti graphic cards.
Operating System is RedHat Enterprise Linux 7.5, CUDA Toolkit 9.0.176 and NVIDIA Driver 384.81 are installed system-wide,
cudnn 7.0.5 is installed in the user’s $HOME directory. The test are performed with Python version 2.7.5.

	For baremetal performance tests, two Tensorflow GPU versions 1.5.0 and 1.8.0 are installed in separate
virtual environments via pip installation tool.

	For uDocker tests, we build two Docker images based on the same Tensorflow versions, 1.5.0 and 1.8.0.
The python scripts and MNIST data are stored inside the images. In both Docker images CUDA Toolkit is 9.0.176,
cudnn version is 7.0.5, and Python is 2.7.12. We use uDocker (devel branch) to pull images from the Docker Hub.
To run the containers, F3 (Fakechroot) mode is set with –nvidia flag (to add NVIDIA libraries and binaries).

	For Singularity tests, Docker images built for uDocker tests where converted to Singularity images and
uploaded to ForHLR II. Singularity version 2.5.2-dist was used. The containers are executed with –nv flag for NVIDIA support.

	In all tests, the CNN scripts with synthetic data are executed for 1000 batches, therefore the mean time per batch is averaged over 1000 steps,
the MNIST script is run for 20000 steps.

The results of the tests are shown in Figure 1, where we normalize the mean runtime per batch to the baremetal case
and Tensorflow 1.8.0. Error bars are scaled by the mean time per batch for baremetal and Tensorflow 1.8.0.
The tests do not indicate any penalty in executing the CNN scripts in either container technology uDocker or
Singularity in comparison with baremetal within the statistical uncertainty.
They may even suggest that running the scripts inside containers is slightly faster than in baremetal,
which could be connected to caching of data locally at the node in case of containers but needs to be better understood.
Tensorflow 1.5.0 tends to be a bit faster than Tensorflow 1.8.0 for synthetic data but slower
when real MNIST dataset is processed. This might be interpreted as improved I/O performance in Tensorflow 1.8.0
comparing to 1.5.0.

[image: GPU implementation tests]
Figure 1: uDocker performance tests using Tensorflow 1.5.0 and 1.8.0 in comparison with Baremetal installation
in a user directory and Singularity. Lower values indicate better performance.

One job per node is executed in these tests, i.e. only one GPU card of the node is used and three other cards are
not involved. uDocker however allows to pass environment settings inside containers, therefore making it
possible to define which GPU card to use through providing the CUDA_VISIBLE_DEVICES parameter.
It was possible to submit a job to our batch system such that in one job we can instantiate 4 uDocker
containers where each container runs on a separate GPU card of the same node. This test does not indicate a degradation
of performance in terms of total runtime and mean runtime per batch but shows significant increase
in the uncertainty of the runtime per batch, especially in the case of the MNIST dataset.

As the tests suggest, it is of interest to study the behavior of processing large datasets from containers.
Therefore we plan to extend our scripts to establish training on e.g. CIFAR datasets [9].
Such training may also require multi-GPU training so that we can preform tests to access all GPU cards
on one node from single container. If our use-cases show interest, we may add other neural network
architectures to the tests, such as Long Short-Term Memory (LSTM) or Generative Adversarial Networks (GAN).

9-Oct-2018

References

	uDocker official GitHub repository: https://github.com/indigo-dc/udocker

	Jorge Gomes, Emanuele Bagnaschi, Isabel Campos, MarioDavid, Luís Alves, João Martins, João Pina, Alvaro López-García, PabloOrviz,
“Enabling rootless Linux Containers in multi-user environments: The udocker tool”, Computer Physics Communications, Volume 232, 2018,
Pages 84-97, ISSN 0010-4655, https://doi.org/10.1016/j.cpc.2018.05.021.

	G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific containers for mobility of compute,” PLoS ONE, 2017.

	Docker Hub tensorflow/tensorflow, https://hub.docker.com/r/tensorflow/tensorflow/

	convnet-benchmarks: https://github.com/soumith/convnet-benchmarks/tree/master/tensorflow ,
Tensorflow MNIST example: https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/examples/tutorials/mnist/mnist_deep.py

	
	AlexNet: Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks (2012),
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

	GoogLeNet: C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich:
Going Deeper with Convolutions (2015), In Computer Vision and Pattern Recognition (CVPR) [http://arxiv.org/abs/1409.4842]

	Overfeat: Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & Lecun, Y. (2014).
Overfeat: Integrated recognition, localization and detection using convolutional networks. In International Conference on Learning Representations (ICLR2014),
CBLS, April 2014 [http://openreview.net/document/d332e77d-459a-4af8-b3ed-55ba, http://arxiv.org/abs/1312.6229]

	VGG: Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition.
CoRR abs/1409.1556 (2014), http://arxiv.org/abs/1409.1556

	tf-benchmarks GitHub: https://github.com/vykozlov/tf-benchmarks/tree/181004, Docker Hub: https://hub.docker.com/r/vykozlov/tf-benchmarks/tags/ , tags 181004-tf150-gpu and 181004-tf180-gpu

	Computational resource ForHLR II available at Karlsruhe Institute of Technology, https://wiki.scc.kit.edu/hpc/index.php/Category:ForHLR

	CIFAR-10 and CIFAR-100 datasets, https://www.cs.toronto.edu/~kriz/cifar.html

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-